Diagonal Matrix Reduction over Refinement Rings
Authors
Abstract:
Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement. Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N if and only if Mm ~Nm for all maximal ideal m of R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is a diagonal matrix. We also prove that for every refinement ring R, every regular matrix over R admits diagonal reduction if and only if every regular matrix over R/J(R) admits diagonal reduction.
similar resources
Factorial Rings and Diagonal Reduction of Matrices
The class of Bézout factorial rings is introduced and characterized. Using the factorial properties of such a ring R, and given a n×m matrix A over R, we find P ∈ GL(n, R) and Q ∈ GL(m, R) such that PAQ is diagonal with every element in the diagonal dividing the following one. Key-words: Ring, Bézout, principal, factorization, reduction of matrices.
full textStrongly Clean Matrix Rings over Commutative Rings
A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute. By SRC factorization, Borooah, Diesl, and Dorsey [3] completely determined when Mn(R) over a commutative local ring R is strongly clean. We generalize the notion of SRC factorization to commutative rings, prove that commutative n-SRC rings (n ≥ 2) are precisely the commutative local ring...
full textStrong cleanness of matrix rings over commutative rings
Let R be a commutative local ring. It is proved that R is Henselian if and only if each R-algebra which is a direct limit of module finite R-algebras is strongly clean. So, the matrix ring Mn(R) is strongly clean for each integer n > 0 if R is Henselian and we show that the converse holds if either the residue class field of R is algebraically closed or R is an integrally closed domain or R is ...
full textZero-Divisor Graph of Triangular Matrix Rings over Commutative Rings
Let R be a noncommutative ring. The zero-divisor graph of R, denoted by Γ(R), is the (directed) graph with vertices Z(R)∗ = Z(R)− {0}, the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗, there is an edge x → y if and only if xy = 0. In this paper we investigate the zero-divisor graph of triangular matrix rings over commutative rings. Mathematics Subject Classification: 16S70; ...
full textMatrix maps over planar near-rings
Following a method by Meldrum and van der Walt, near-rings of matrix maps are defined for general near-rings, not necessarily with identity. The influence of one-sided identities is discussed. When the base near-ring is integral and planar, the near-ring of matrix maps is shown to be simple. Various types of primitivity of the near-ring of matrix maps are discussed when the base near-ring is pl...
full textOn Projective Geometry over Full Matrix Rings
1. K. L. Chung, Fluctuation of sums of independent random variables, Ann. of Math. vol. 51 (1950) pp. 697-706. 2. K. L. Chung and P. Erdos, Probability limit theorems assuming only the first moment. I, Memoirs of the American Mathematical Society, no. 6, pp. 13-19. 3.-, On the lower limit of sums of independent random variables, Ann. of Math. vol. 48 (1947) pp. 1003-1013. 4. K. L. Chung and W. ...
full textMy Resources
Journal title
volume 8 issue 3
pages 132- 143
publication date 2022-11
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023